Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Titanium nitride and vanadium nitride–carbon-based composite systems, TiN/C and VN/C, were prepared using a new synthesis method based on the thermal decomposition of titanyl tetraphenyl porphyrin (TiOTPP) and vanadyl tetraphenyl porphyrin (VOTPP), respectively. The structure of the TiN/C and VN/C composite materials, as well as their precursors, were characterized using Fourier Transformed Infrared Spectroscopy, X-Ray diffraction (XRD), X-Ray energy dispersive (EDS) and X-Ray photoelectron spectroscopy (XPS). Morphologies of the TiN/C and VN/C composites were examined by means of scanning electron (SEM) and transmission electron (TEM) microscopy. The synthesis of the non-metalated tetraphenyl porphyrin, the titanium, and vanadium tetraphenyl porphyrin complexes were confirmed using FTIR. The thermal decomposition of the titanium and vanadium tetraphenyl porphyrin complexes produced the respective metal nitride encapsulated in a carbon matrix; this was confirmed by XRD, SEM, TEM, and XPS. From the XRD patterns, it was determined that the TiN and VN were presented in cubic form with expected space group FM-3M and 1:1 (metal:N) stoichiometry. The XPS results confirmed the presence of both TiN and VN in the carbon matrix without metal carbides. The SEM and TEM results showed that both TiN and VN nanoparticles formed small clusters throughout the carbon matrix; the EDS results revealed a uniform composition. The synthesis method presented in this work is novel and serves as an effective means to produce TiN and VN NPs with good structure and morphology embedded in a carbon matrix.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            The present work focuses on the synthesis of a vanadium nitride (VN)/carbon nanocomposite material via the thermal decomposition of vanadyl phthalocyanine (VOPC). The morphology and chemical structure of the synthesized compounds were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS). The successful syntheses of the VOPC and non-metalated phthalocyanine (H2PC) precursors were confirmed using FTIR and XRD. The VN particles present a needle-like morphology in the VN synthesized by the sol-gel method. The morphology of the VN/C composite material exhibited small clusters of VN particles. The XRD analysis of the thermally decomposed VOPC indicated a mixture of amorphous carbon and VN nanoparticles (VN(TD)) with a cubic structure in the space group FM-3M consistent with that of VN. The XPS results confirmed the presence of V(III)-N bonds in the resultant material, indicating the formation of a VN/C nanocomposite. The VN/C nanocomposite synthesized through thermal decomposition exhibited a high carbon content and a cluster-like distribution of VN particles. The VN/C nanocomposite was used as an anode material in LIBs, which delivered a specific capacity of 307 mAh g−1 after 100 cycles and an excellent Coulombic efficiency of 99.8 at the 100th cycle.more » « less
- 
            This work focuses on the synthesis of titanium nitride–carbon (TiN–carbon) composites by the thermal decomposition of a titanyl phthalocyanine (TiN(TD)) precursor into TiN. The synthesis of TiN was also performed using the sol-gel method (TiN(SG)) of an alkoxide/urea. The structure and morphology of the TiN–carbon and its precursors were characterized by XRD, FTIR, SEM, TEM, EDS, and XPS. The FTIR results confirmed the presence of the titanium phthalocyanine (TiOPC) complex, while the XRD data corroborated the decomposition of TiOPC into TiN. The resultant TiN exhibited a cubic structure with the FM3-M lattice, aligning with the crystal system of the synthesized TiN via the alkoxide route. The XPS results indicated that the particles synthesized from the thermal decomposition of TiOPC resulted in the formation of TiN–carbon composites. The TiN particles were present as clusters of small spherical particles within the carbon matrix, displaying a porous sponge-like morphology. The proposed thermal decomposition method resulted in the formation of metal nitride composites with high carbon content, which were used as anodes for Li-ion half cells. The TiN–carbon composite anode showed a good specific capacity after 100 cycles at a current density of 100 mAg−1.more » « less
- 
            Abstract Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.more » « less
- 
            Fall armyworm is one of the main pests of conventional and Bacillus thuringiensis (Bt) corn in many countries in the Americas, Africa, Asia and in Australia. We conducted diet-overlay bioassays to determine the status of susceptibility to four Bt proteins (Cry1A.105, Cry2Ab2, Cry1F and Cry1Ac) in three different populations of fall armyworm from Mexico, and one population from Puerto Rico. Bioassays showed that fall armyworms from Puerto Rico were resistant to Cry1F with a resistance ratio 50 (RR50) higher than 10,000 ng/cm2 and to Cry1Ac with a RR50 = 12.2 ng/cm2, displaying the highest median lethal concentration (LC50) values to all Bt proteins tested. The effective concentration 50 (EC50) values further confirmed the loss of susceptibility to Cry1F and Cry1Ac in this population. However, LC50 and EC50 results with Cry1A.105 and Cry2Ab2 revealed that fall armyworm from Puerto Rico remained largely susceptible to these two proteins. The Mexican populations were highly susceptible to all the Bt proteins tested and displayed the lowest LC50 and EC50 values to all Bt proteins. Our results suggest that Cry1F and Cry1Ac resistance is stable in fall armyworm from Puerto Rico. However, this population remains susceptible to Cry1A.105 and Cry2Ab2. Results with Mexican fall armyworms suggest that possible deployment of Bt corn in Mexico will not be immediately challenged by Bt-resistant genes in those regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
